user:mmaahn

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
user:mmaahn [2023/10/23 14:27] – [Publications] Maximilian Maahnuser:mmaahn [2024/03/25 08:01] Maximilian Maahn
Line 1: Line 1:
 ====== Maximilian Maahn ====== ====== Maximilian Maahn ======
  
-Head of research group [[https://www.physgeo.uni-leipzig.de/en/institut-fuer-meteorologie/forschung/arbeitsgruppe-maahn/forschung|clouD and pRecipitation Observations for Process Studies +**Head of research group [[https://www.physgeo.uni-leipzig.de/en/institut-fuer-meteorologie/forschung/arbeitsgruppe-maahn/forschung|clouD and pRecipitation Observations for Process Studies 
- (drOPS)]]+ (drOPS)]]**
  
 <panel type="primary" title="News" > <panel type="primary" title="News" >
 +  * The [[https://unileipzig.pageflow.io/dem-schnee-auf-der-spur|multimedia feature about our contribution to the SAIL campaign]] is now online.   
 +  * The ESA Earth Explorer 11 candidate satellite mission [[https://wivern.polito.it/|WIVERN]] has been selected for phase A![[https://www.physes.uni-leipzig.de/institut-fuer-meteorologie/aktuelles/newsdetail/artikel/entscheidender-fortschritt-fuer-esa-satellitenmission-zur-beobachtung-von-wind-innerhalb-von-wolken-2023-11-23|German News]],  [[https://www.uni-leipzig.de/newsdetail/artikel/bessere-wettervorhersagen-mit-hilfe-aus-dem-all-2023-12-01|German Interview]],  [[https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Cairt_and_Wivern_Earth_Explorer_candidates_go_forward|English news]]
   * Check out the preprint of our new VISSS paper [[https://egusphere.copernicus.org/preprints/2023/egusphere-2023-655]]   * Check out the preprint of our new VISSS paper [[https://egusphere.copernicus.org/preprints/2023/egusphere-2023-655]]
-  * Please mark your calendars for the 4th International Summer Snowfall Workshop 11 - 13 September 2023 in Leipzig https://monsun.meteo.uni-leipzig.de/~drops/issw4/ 
   * Read a background article (in German) about our contribution to the SAIL campaign in Colorado [[https://magazin.uni-leipzig.de/bloggen/bloggen/artikel/dem-schnee-auf-der-spur-messkampagne-auf-ueber-2800-metern-hoehe-2023-01-02|Leipziger Universitäts Magazin]]   * Read a background article (in German) about our contribution to the SAIL campaign in Colorado [[https://magazin.uni-leipzig.de/bloggen/bloggen/artikel/dem-schnee-auf-der-spur-messkampagne-auf-ueber-2800-metern-hoehe-2023-01-02|Leipziger Universitäts Magazin]]
  </panel>  </panel>
Line 53: Line 54:
  
 ===== Professional Activities ===== ===== Professional Activities =====
-  * Member [[https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Preparing_for_tomorrow/Four_mission_ideas_to_compete_for_Earth_Explorer_11|ESA WIVERN]] Mission Advisory Group (since 2021), [[https://www.arm.gov/about/constituent-groups/uec|ARM User Executive Committee]] (2018 - 2020) +  * Member [[https://wivern.polito.it/|ESA WIVERN]] Mission Advisory Group (since 2021), [[https://www.arm.gov/about/constituent-groups/uec|ARM User Executive Committee]] (2018 - 2020) 
-  * Associate Editor[[https://www.atmospheric-measurement-techniques.net|Atmospheric Measurement Techniques]] (since 2020), [[https://journals.ametsoc.org/toc/apme/current|Journal of Applied Meteorology and Climatology]] (2016 - 2020)+  * Editor [[https://www.atmospheric-measurement-techniques.net|Atmospheric Measurement Techniques]] (since 2020), Associate Editor [[https://journals.ametsoc.org/toc/apme/current|Journal of Applied Meteorology and Climatology]] (2016 - 2020)
   * Reviewer (proposals): DOE Atmospheric System Research program, Swiss National Science Foundation (SNSF)   * Reviewer (proposals): DOE Atmospheric System Research program, Swiss National Science Foundation (SNSF)
   * Conference Program Committee Member: [[https://ams.confex.com/ams/38RADAR/webprogram/meeting.html|AMS 38th Conference on Radar Meteorology 2017]], [[http://erad2016.mgm.gov.tr/|9th European Conference on Radar in Meteorology 2016]], [[http://www.met.reading.ac.uk/~sws04cdw/issw3_programme.html| 3rd International Summer Snowfall Workshop 2021]], [[https://monsun.meteo.uni-leipzig.de/~drops/issw4/| 4th International Summer Snowfall Workshop 2023]]   * Conference Program Committee Member: [[https://ams.confex.com/ams/38RADAR/webprogram/meeting.html|AMS 38th Conference on Radar Meteorology 2017]], [[http://erad2016.mgm.gov.tr/|9th European Conference on Radar in Meteorology 2016]], [[http://www.met.reading.ac.uk/~sws04cdw/issw3_programme.html| 3rd International Summer Snowfall Workshop 2021]], [[https://monsun.meteo.uni-leipzig.de/~drops/issw4/| 4th International Summer Snowfall Workshop 2023]]
   * Organizer: Young Scientists Networking Meeting at the AMS 38th Conference on Radar Meteorology 2017   * Organizer: Young Scientists Networking Meeting at the AMS 38th Conference on Radar Meteorology 2017
 ===== Grants ===== ===== Grants =====
 +  * 01/2024-12/2027: [[http://www.ac3-tr.de/|DFG (AC)3 project E05]]. Process-level Understanding of Sublimation and Evaporation of Precipitation. 
   * 09/2023-08/2024: SMWK (Saxon State Ministry for Science, Culture and Tourism) project for preparing Breathing Nature Excellence Initiative (80 k€).   * 09/2023-08/2024: SMWK (Saxon State Ministry for Science, Culture and Tourism) project for preparing Breathing Nature Excellence Initiative (80 k€).
   * 09/2023-08/2026: DFG project EMPOS Evaluating Microphysical Pathways Of Midlatitude Snow Formation EMPOS (256 k€).   * 09/2023-08/2026: DFG project EMPOS Evaluating Microphysical Pathways Of Midlatitude Snow Formation EMPOS (256 k€).
Line 76: Line 78:
 ===== Publications ===== ===== Publications =====
  
-drOPS team members are __underlined__.+drOPS team members are __underlined__. //Data (DXX) und code (CXX) publications are in italic.//
  
 **Submitted/in review** **Submitted/in review**
  
-38) Mahecha, M. D., and coauthors (including **M. Maahn**), 2023: Biodiversity and climate extremes: known interactions and research gaps. Earth’s Future, **submitted**, https://doi.org/10.22541/essoar.169462031.19744802/v1.\\  +39) Wendisch, M., and coauthors (including **M. Maahn**, __N. Maherndl__), 2024: Overview: Quasi-Lagrangian observations of Arctic air mass transformations – Introduction and initial results of the HALO–(AC)3 aircraft campaign. ACP/EGUsphere, **submitted**\\ 
-37) Lee, J., P. Seifert, T. Hashino, **M. Maahn**, F. Senf, and O. Knoth, 2023: Numerical evidence that the impact of CCN and INP concentrations on mixed-phase clouds is observable with cloud radars. ACP/EGUsphere, **in review**, https://doi.org/10.5194/egusphere-2023-1887.\\ +38) Mahecha, M. D., and coauthors (including **M. Maahn**), 2023: Biodiversity and climate extremes: known interactions and research gaps. Earth’s Future, **in review**, https://doi.org/10.22541/essoar.169462031.19744802/v1.\\  
-36) __Maherndl, N.__, M. Moser, J. Lucke, M. Mech, N. Risse, I. Schirmacher, and **M. Maahn**, 2023: Quantifying riming from airborne data during HALO-(AC)3. AMT/EGUsphere**in review**132, https://doi.org/10.5194/egusphere-2023-1118.\\ + 
-35) **Maahn, M.**, D. Moisseev, __I. Steinke__, __N. Maherndl__, and M. D. Shupe, 2023: Introducing the Video In Situ Snowfall Sensor (VISSS). AMT/EGUsphere, **in review**, 1–27, https://doi.org/10.5194/egusphere-2023-655.\\+**2024** 
 + 
 +37) Lee, J., P. Seifert, T. Hashino, **M. Maahn**, F. Senf, and O. Knoth, 2023: Numerical evidence that the impact of CCN and INP concentrations on mixed-phase clouds is observable with cloud radars. ACP/EGUsphere, **accepted**, https://doi.org/10.5194/egusphere-2023-1887.\\ 
 +36) __Maherndl, N.__, M. Moser, J. Lucke, M. Mech, N. Risse, I. Schirmacher, and **M. Maahn**, 2024: Quantifying riming from airborne data during HALO-(AC)3. Atmos. Meas. Tech.1714751495, https://doi.org/10.5194/amt-17-1475-2024.\\ 
 +35) **Maahn, M.**, D. Moisseev, __I. Steinke__, __N. Maherndl__, and M. D. Shupe, 2024: Introducing the Video In Situ Snowfall Sensor (VISSS). Atmos. Meas. Tech.17, 899–919, https://doi.org/10.5194/amt-17-899-2024.\\ 
 +D8) //**Maahn, M.**, and S. Wolter2024: Hardware design of the Video In Situ Snowfall Sensor v3 (VISSS3). https://doi.org/10.5281/zenodo.10526898. //\\ 
 +D7) //**Maahn, M.**, __V. Ettrichraetz__, and __I. Steinke__, 2024: VISSS Raw data from SAIL at Gothic from November 2022 to June 2023, https://doi.org/10.5439/2278627. //\\
  
 **2023** **2023**
Line 90: Line 98:
 33) __Maherndl, N.__, **M. Maahn**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh–Gans approximation. Q.J.R. Meteorol. Soc., https://doi.org/10.1002/qj.4573. \\ 33) __Maherndl, N.__, **M. Maahn**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh–Gans approximation. Q.J.R. Meteorol. Soc., https://doi.org/10.1002/qj.4573. \\
 32) Wendisch, M., and Coauthors (including **M. Maahn**), 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project. Bull. Amer. Meteor. Soc., 1, https://doi.org/10.1175/BAMS-D-21-0218.1. \\ 32) Wendisch, M., and Coauthors (including **M. Maahn**), 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project. Bull. Amer. Meteor. Soc., 1, https://doi.org/10.1175/BAMS-D-21-0218.1. \\
 +C5) //**Maahn, M.**, 2023: Video In Situ Snowfall Sensor (VISSS) data processing library  V2023.1.6. https://doi.org/10.5281/zenodo.7650394.  //\\
 +C4) //**Maahn, M.**, 2023: Video In Situ Snowfall Sensor (VISSS) data acquisition software V0.3.1. https://doi.org/10.5281/zenodo.7640801. // \\
 +D6) // __Maherndl. N.__, **Maahn, M.**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: Data set of simulated rimed aggregates for “A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh-Gans approximation.” https://doi.org/10.5281/zenodo.7757034. https://zenodo.org/records/7757034. //\\
 +D5) // **Maahn, M.**, and __N. Maherndl__, 2023: Video In Situ Snowfall Sensor (VISSS) data for Ny-Ålesund (2021-2023). https://doi.org/10.1594/PANGAEA.958537. //\\
 +D4) // **Maahn, M.**, and D. Moisseev, 2023: Video In Situ Snowfall Sensor (VISSS) data for Hyytiälä (2021-2022). https://doi.org/10.1594/PANGAEA.959046. //\\
 +D3) //**Maahn, M.**, C. J. Cox, M. R. Gallagher, J. K. Hutchings, M. D. Shupe, and U. Taneil, 2023: Video In Situ Snowfall Sensor (VISSS) data from MOSAiC expedition with POLARSTERN (2019-2020). https://doi.org/10.1594/PANGAEA.960391. //\\
 +D2) //**Maahn, M.**, R. Haseneder-Lind, and P. Krobot, 2023: Hardware design of the Video In Situ Snowfall Sensor v2 (VISSS2). https://doi.org/10.5281/zenodo.7640821. //\\
 +
  
 **2022** **2022**
Line 105: Line 121:
 **2020** **2020**
  
-25) **Maahn, M.**, D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G. Mace, and J. M. Comstock, 2020: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. Bull. Amer. Meteor. Soc., 101, E1512–E1523, doi:https://doi.org/10.1175/BAMS-D-19-0027.1. __{{ :user:mmaahn:bams_february_2021.pdf |Three page summary of the article}}__ \\ +25) **Maahn, M.**, D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G. Mace, and J. M. Comstock, 2020: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. Bull. Amer. Meteor. Soc., 101, E1512–E1523, https://doi.org/10.1175/BAMS-D-19-0027.1. __{{ :user:mmaahn:bams_february_2021.pdf |Three page summary of the article}}__ \\ 
-24) Matrosov, S. Y., A. V. Ryzhkov, **M. Maahn**, and G. de Boer, 2020: Hydrometeor Shape Variability in Snowfall as Retrieved from Polarimetric Radar Measurements. J. Appl. Meteor. Climatol., 59, 1503–1517, doi:https://doi.org/10.1175/JAMC-D-20-0052.1.\\ +24) Matrosov, S. Y., A. V. Ryzhkov, **M. Maahn**, and G. de Boer, 2020: Hydrometeor Shape Variability in Snowfall as Retrieved from Polarimetric Radar Measurements. J. Appl. Meteor. Climatol., 59, 1503–1517, https://doi.org/10.1175/JAMC-D-20-0052.1.\\ 
-23) Mech, M., **M. Maahn**, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geosci. Model Dev., 13, 4229–4251, doi:https://doi.org/10.5194/gmd-13-4229-2020.\\+23) Mech, M., **M. Maahn**, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020.\\ 
 +C3) //**Maahn, M.**, 2020: “pyOptimalEstimation” Package. https://github.com/maahn/pyOptimalEstimation. //\\
  
 **2019** **2019**
  
-22) Acquistapace, C., U. Löhnert, **M. Maahn**, and P. Kollias, 2019: A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing. J. Atmos. Oceanic Technol., 36, 781–801, doi:https://doi.org/10.1175/JTECH-D-18-0158.1.\\ +22) Acquistapace, C., U. Löhnert, **M. Maahn**, and P. Kollias, 2019: A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing. J. Atmos. Oceanic Technol., 36, 781–801, https://doi.org/10.1175/JTECH-D-18-0158.1.\\ 
-21) Ghate, V. P., P. Kollias, S. Crewell, A. M. Fridlind, T. Heus, U. Löehnert, **M. Maahn**, G. M. McFarquhar, D. Moisseev, M. Oue, M. Wendisch, and C. Williams, 2019: The Second ARM Training and Science Application Event: Training the Next Generation of Atmospheric Scientists. Bull. Amer. Meteor. Soc., 100, ES5–ES9, doi:https://doi.org/10.1175/BAMS-D-18-0242.1.\\ +21) Ghate, V. P., P. Kollias, S. Crewell, A. M. Fridlind, T. Heus, U. Löehnert, **M. Maahn**, G. M. McFarquhar, D. Moisseev, M. Oue, M. Wendisch, and C. Williams, 2019: The Second ARM Training and Science Application Event: Training the Next Generation of Atmospheric Scientists. Bull. Amer. Meteor. Soc., 100, ES5–ES9, https://doi.org/10.1175/BAMS-D-18-0242.1.\\ 
-20) **Maahn, M.**, F. Hoffmann, M. D. Shupe, G. de Boer, S. Y. Matrosov, and E. P. Luke, 2019: Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration? Atmos. Meas. Tech., 12, 3151–3171, doi:https://doi.org/10.5194/amt-12-3151-2019.\\ +20) **Maahn, M.**, F. Hoffmann, M. D. Shupe, G. de Boer, S. Y. Matrosov, and E. P. Luke, 2019: Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration? Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019.\\ 
-19) Matrosov, S. Y., **M. Maahn**, and G. de Boer, 2019: Observational and Modeling Study of Ice Hydrometeor Radar Dual-Wavelength Ratios. J. Appl. Meteor. Climatol., 58, 2005–2017, doi:https://doi.org/10.1175/JAMC-D-19-0018.1.\\+19) Matrosov, S. Y., **M. Maahn**, and G. de Boer, 2019: Observational and Modeling Study of Ice Hydrometeor Radar Dual-Wavelength Ratios. J. Appl. Meteor. Climatol., 58, 2005–2017, https://doi.org/10.1175/JAMC-D-19-0018.1.\\ 
 +C2) //**Maahn, M.**, and D. Ori, 2019: maahn/pamtra2: calibrationPaper_v1. https://doi.org/10.5281/zenodo.2552448. //\\ 
 +D1) //**Maahn, M.**, 2019: MASC Snowparticle Images. https://doi.org/10.5439/1497701. //\\
  
 **2018** **2018**
  
-18) de Boer, G., M. Ivey, B. Schmid, D. Lawrence, D. Dexheimer, F. Mei, J. Hubbe, A. Bendure, J. Hardesty, M. D. Shupe, A. McComiskey, H. Telg, C. Schmitt, S. Y. Matrosov, I. Brooks, J. Creamean, A. Solomon, D. D. Turner, C. Williams, **M. Maahn**, B. Argrow, S. Palo, C. N. Long, R.-S. Gao, and J. Mather, 2018: A Bird’s-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska. Bull. Amer. Meteor. Soc., 99, 1197–1212, doi:https://doi.org/10.1175/BAMS-D-17-0156.1.\\ +18) de Boer, G., M. Ivey, B. Schmid, D. Lawrence, D. Dexheimer, F. Mei, J. Hubbe, A. Bendure, J. Hardesty, M. D. Shupe, A. McComiskey, H. Telg, C. Schmitt, S. Y. Matrosov, I. Brooks, J. Creamean, A. Solomon, D. D. Turner, C. Williams, **M. Maahn**, B. Argrow, S. Palo, C. N. Long, R.-S. Gao, and J. Mather, 2018: A Bird’s-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska. Bull. Amer. Meteor. Soc., 99, 1197–1212, https://doi.org/10.1175/BAMS-D-17-0156.1.\\ 
-17) Creamean, J. M., R. M. Kirpes, K. A. Pratt, N. J. Spada, **M. Maahn**, G. de Boer, R. C. Schnell, and S. China, 2018: Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmos. Chem. Phys., 18, 18023–18042, doi:https://doi.org/10.5194/acp-18-18023-2018.\\ +17) Creamean, J. M., R. M. Kirpes, K. A. Pratt, N. J. Spada, **M. Maahn**, G. de Boer, R. C. Schnell, and S. China, 2018: Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmos. Chem. Phys., 18, 18023–18042, https://doi.org/10.5194/acp-18-18023-2018.\\ 
-16) Creamean, J. M., **M. Maahn**, G. de Boer, A. McComiskey, A. J. Sedlacek, and Y. Feng, 2018: The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska. Atmos. Chem. Phys., 18, 555–570, doi:https://doi.org/10.5194/acp-18-555-2018.\\ +16) Creamean, J. M., **M. Maahn**, G. de Boer, A. McComiskey, A. J. Sedlacek, and Y. Feng, 2018: The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska. Atmos. Chem. Phys., 18, 555–570, https://doi.org/10.5194/acp-18-555-2018.\\ 
-15) Solomon, A., G. de Boer, J. M. Creamean, A. McComiskey, M. D. Shupe, **M. Maahn**, and C. Cox, 2018: The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds. Atmos. Chem. Phys., 18, 17047–17059, doi:https://doi.org/10.5194/acp-18-17047-2018.\\ +15) Solomon, A., G. de Boer, J. M. Creamean, A. McComiskey, M. D. Shupe, **M. Maahn**, and C. Cox, 2018: The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds. Atmos. Chem. Phys., 18, 17047–17059, https://doi.org/10.5194/acp-18-17047-2018.\\ 
-14) Williams, C. R., **M. Maahn**, J. C. Hardin, and G. de Boer, 2018: Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra. Atmos. Meas. Tech., 11, 4963–4980, doi:https://doi.org/10.5194/amt-11-4963-2018.\\ +14) Williams, C. R., **M. Maahn**, J. C. Hardin, and G. de Boer, 2018: Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra. Atmos. Meas. Tech., 11, 4963–4980, https://doi.org/10.5194/amt-11-4963-2018.\\ 
-13) Acquistapace, C., S. Kneifel, U. Löhnert, P. Kollias, **M. Maahn**, and M. Bauer-Pfundstein, 2017: Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmos. Meas. Tech., 10, 1783–1802, doi:https://doi.org/10.5194/amt-10-1783-2017.\\+13) Acquistapace, C., S. Kneifel, U. Löhnert, P. Kollias, **M. Maahn**, and M. Bauer-Pfundstein, 2017: Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017.\\
  
 **2017** **2017**
  
-12) Bühl, J., S. Alexander, S. Crewell, A. Heymsfield, H. Kalesse, A. Khain, **M. Maahn**, K. Van Tricht, and M. Wendisch, 2017: Remote Sensing. Meteor. Mon., 58, 10.1-10.21, doi:https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0015.1.\\ +12) Bühl, J., S. Alexander, S. Crewell, A. Heymsfield, H. Kalesse, A. Khain, **M. Maahn**, K. Van Tricht, and M. Wendisch, 2017: Remote Sensing. Meteor. Mon., 58, 10.1-10.21, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0015.1.\\ 
-11) **Maahn, M.**, and U. Löhnert, 2017: Potential of Higher-Order Moments and Slopes of the Radar Doppler Spectrum for Retrieving Microphysical and Kinematic Properties of Arctic Ice Clouds. J. Appl. Meteor. Climatol., 56, 263–282, doi:https://doi.org/10.1175/JAMC-D-16-0020.1.\\ +11) **Maahn, M.**, and U. Löhnert, 2017: Potential of Higher-Order Moments and Slopes of the Radar Doppler Spectrum for Retrieving Microphysical and Kinematic Properties of Arctic Ice Clouds. J. Appl. Meteor. Climatol., 56, 263–282, https://doi.org/10.1175/JAMC-D-16-0020.1.\\ 
-10) **Maahn, M.**, G. de Boer, J. M. Creamean, G. Feingold, G. M. McFarquhar, W. Wu, and F. Mei, 2017: The observed influence of local anthropogenic pollution on northern Alaskan cloud properties. Atmos. Chem. Phys., 17, 14709–14726, doi:https://doi.org/10.5194/acp-17-14709-2017.\\ +10) **Maahn, M.**, G. de Boer, J. M. Creamean, G. Feingold, G. M. McFarquhar, W. Wu, and F. Mei, 2017: The observed influence of local anthropogenic pollution on northern Alaskan cloud properties. Atmos. Chem. Phys., 17, 14709–14726, https://doi.org/10.5194/acp-17-14709-2017.\\ 
-9) Matrosov, S. Y., C. G. Schmitt, **M. Maahn**, and G. de Boer, 2017: Atmospheric Ice Particle Shape Estimates from Polarimetric Radar Measurements and In Situ Observations. J. Atmos. Oceanic Technol., 34, 2569–2587, doi:https://doi.org/10.1175/JTECH-D-17-0111.1.\\ +9) Matrosov, S. Y., C. G. Schmitt, **M. Maahn**, and G. de Boer, 2017: Atmospheric Ice Particle Shape Estimates from Polarimetric Radar Measurements and In Situ Observations. J. Atmos. Oceanic Technol., 34, 2569–2587, https://doi.org/10.1175/JTECH-D-17-0111.1.\\ 
-8) Souverijns, N., A. Gossart, S. Lhermitte, I. V. Gorodetskaya, S. Kneifel, **M. Maahn**, F. L. Bliven, and N. P. M. van Lipzig, 2017: Estimating radar reflectivity - Snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations. Atmos. Res., 196, 211–223, doi:https://doi.org/10.1016/j.atmosres.2017.06.001.\\+8) Souverijns, N., A. Gossart, S. Lhermitte, I. V. Gorodetskaya, S. Kneifel, **M. Maahn**, F. L. Bliven, and N. P. M. van Lipzig, 2017: Estimating radar reflectivity - Snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations. Atmos. Res., 196, 211–223, https://doi.org/10.1016/j.atmosres.2017.06.001.\\
  
 **2016** **2016**
  
-7) Kneifel, S., P. Kollias, A. Battaglia, J. Leinonen, **M. Maahn**, H. Kalesse, and F. Tridon, 2016: First observations of triple-frequency radar Doppler spectra in snowfall: Interpretation and applications. Geophys. Res. Lett., 43, 2225–2233, doi:https://doi.org/10.1002/2015GL067618.\\+7) Kneifel, S., P. Kollias, A. Battaglia, J. Leinonen, **M. Maahn**, H. Kalesse, and F. Tridon, 2016: First observations of triple-frequency radar Doppler spectra in snowfall: Interpretation and applications. Geophys. Res. Lett., 43, 2225–2233, https://doi.org/10.1002/2015GL067618.\\
  
 **2015** **2015**
  
-6) Gorodetskaya, I. V., S. Kneifel, **M. Maahn**, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig, 2015: Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere, 9, 285–304, doi:https://doi.org/10.5194/tc-9-285-2015.\\ +6) Gorodetskaya, I. V., S. Kneifel, **M. Maahn**, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig, 2015: Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015.\\ 
-5) Löhnert, U., J. H. Schween, C. Acquistapace, K. Ebell, M. **Maahn, M.** Barrera-Verdejo, A. Hirsikko, B. Bohn, A. Knaps, E. O’Connor, C. Simmer, A. Wahner, and S. Crewell, 2015: JOYCE: Jülich Observatory for Cloud Evolution. Bull. Amer. Meteor. Soc., 96, 1157–1174, doi:https://doi.org/10.1175/BAMS-D-14-00105.1.\\ +5) Löhnert, U., J. H. Schween, C. Acquistapace, K. Ebell, M. **Maahn, M.** Barrera-Verdejo, A. Hirsikko, B. Bohn, A. Knaps, E. O’Connor, C. Simmer, A. Wahner, and S. Crewell, 2015: JOYCE: Jülich Observatory for Cloud Evolution. Bull. Amer. Meteor. Soc., 96, 1157–1174, https://doi.org/10.1175/BAMS-D-14-00105.1.\\ 
-4) **Maahn, M.**, U. Löhnert, P. Kollias, R. C. Jackson, and G. M. McFarquhar, 2015: Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of Radar Moments Using in situ Aircraft Observations. J. Atmos. Oceanic Technol., 32, 880–903, doi:https://doi.org/10.1175/JTECH-D-14-00112.1.\\+4) **Maahn, M.**, U. Löhnert, P. Kollias, R. C. Jackson, and G. M. McFarquhar, 2015: Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of Radar Moments Using in situ Aircraft Observations. J. Atmos. Oceanic Technol., 32, 880–903, https://doi.org/10.1175/JTECH-D-14-00112.1.\\
  
 **2011 - 2014** **2011 - 2014**
  
-3) **Maahn, M.**, C. Burgard, S. Crewell, I. V. Gorodetskaya, S. Kneifel, S. Lhermitte, K. Van Tricht, and N. P. M. van Lipzig, 2014: How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? J. Geophys. Res. Atmos., 119, 13604–13620, doi:https://doi.org/10.1002/2014JD022079.\\ +3) **Maahn, M.**, C. Burgard, S. Crewell, I. V. Gorodetskaya, S. Kneifel, S. Lhermitte, K. Van Tricht, and N. P. M. van Lipzig, 2014: How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? J. Geophys. Res. Atmos., 119, 13604–13620, https://doi.org/10.1002/2014JD022079.\\ 
-2) **Maahn, M.**, and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 2661–2673, doi:https://doi.org/10.5194/amt-5-2661-2012.\\ +2) **Maahn, M.**, and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 2661–2673, https://doi.org/10.5194/amt-5-2661-2012.\\ 
-1) Kneifel, S., **M. Maahn**, G. Peters, and C. Simmer, 2011: Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar). Meteorol. Atmos. Phys., 113, 75–87, doi:https://doi.org/10.1007/s00703-011-0142-z.\\+C1) //**Maahn, M.**, 2012: IMProToo - Improved Mrr Processing Tool. https://github.com/maahn/IMProToo. //\\ 
 +1) Kneifel, S., **M. Maahn**, G. Peters, and C. Simmer, 2011: Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar). Meteorol. Atmos. Phys., 113, 75–87, https://doi.org/10.1007/s00703-011-0142-z.\\
  
 ===== Invited Talks===== ===== Invited Talks=====