Both sides previous revision Previous revision Next revision | Previous revision |
user:mmaahn [2025/01/10 13:00] – Maximilian Maahn | user:mmaahn [2025/03/05 09:28] (current) – [CV] Maximilian Maahn |
---|
<maximilian.maahn@uni-leipzig.de>\\ | <maximilian.maahn@uni-leipzig.de>\\ |
Institut für Meteorologie\\ | Institut für Meteorologie\\ |
Stephanstraße 3, Room 7\\ | Stephanstraße 3, Room 111\\ |
04103 Leipzig | 04103 Leipzig |
</col> | </col> |
| |
| |
Maximilian Maahn joined the Leipzig Institute for Meteorology in July 2020 and leads the drOPS (clouD and pRecipitation Observations for Process Studies) group. His main research interests include enhancing radar observations of polar clouds and precipitation and understanding how clouds are influenced by aerosols through remote sensing and in-situ observations. He is currently developing a novel in situ sensor for snowfall, the Video In Situ Snowfall Sensor (VISSS). Read a feature about his background and work at the website of the ARM program at https://www.arm.gov/news/features/post/54283 | Maximilian Maahn joined the Leipzig Institute for Meteorology in July 2020 and leads the drOPS (clouD and pRecipitation Observations for Process Studies) group. His main research interests include enhancing radar observations of polar clouds and precipitation and using these observations for understanding precipitation formation in clouds. He is currently developing a novel in situ sensor for snowfall, the Video In Situ Snowfall Sensor (VISSS). |
===== CV ===== | ===== CV ===== |
**Professional career** | **Professional career** |
* 01/2009 - 06/2009: University Centre in Svalbard: Semester abroad | * 01/2009 - 06/2009: University Centre in Svalbard: Semester abroad |
* 10/2005 - 11/2010: Bonn University: Meteorology (Diplom). Thesis: Measuring Precipitation with Micro Rain Radars in Svalbard. | * 10/2005 - 11/2010: Bonn University: Meteorology (Diplom). Thesis: Measuring Precipitation with Micro Rain Radars in Svalbard. |
| **Qualifications** |
| * 11/2024: Mental Health First Aid (MHFA) first aider |
===== Teaching ===== | ===== Teaching ===== |
| |
* Member [[https://wivern.polito.it/|ESA WIVERN]] Mission Advisory Group (since 2021), [[https://www.arm.gov/about/constituent-groups/uec|ARM User Executive Committee]] (2018 - 2020) | * Member [[https://wivern.polito.it/|ESA WIVERN]] Mission Advisory Group (since 2021), [[https://www.arm.gov/about/constituent-groups/uec|ARM User Executive Committee]] (2018 - 2020) |
* Editor [[https://www.atmospheric-measurement-techniques.net|Atmospheric Measurement Techniques]] (since 2020), Associate Editor [[https://journals.ametsoc.org/toc/apme/current|Journal of Applied Meteorology and Climatology]] (2016 - 2020) | * Editor [[https://www.atmospheric-measurement-techniques.net|Atmospheric Measurement Techniques]] (since 2020), Associate Editor [[https://journals.ametsoc.org/toc/apme/current|Journal of Applied Meteorology and Climatology]] (2016 - 2020) |
* Reviewer (proposals): Agence nationale de la recherche (ANR), DOE Atmospheric System Research program (ASR), Swiss National Science Foundation (SNSF) | * Reviewer: Atmospheric Chemistry and Physics, Atmospheric Measurement Techniques, Earth and Space Science, Geophysical Research Letters, Journal of Applied Meteorology and Climatology, Journal of Atmospheric and Oceanic Technology, Journal of the Atmospheric Sciences, Journal of Geophysical Research, Nature Scientific Reports, Remote Sensing, Agence Nationale de la Recherche, DOE Atmospheric System Research program, Swiss National Science Foundation |
* Conference Program Committee Member: [[https://ams.confex.com/ams/38RADAR/webprogram/meeting.html|AMS 38th Conference on Radar Meteorology 2017]], [[http://erad2016.mgm.gov.tr/|9th European Conference on Radar in Meteorology 2016]], [[http://www.met.reading.ac.uk/~sws04cdw/issw3_programme.html| 3rd International Summer Snowfall Workshop 2021]], [[https://monsun.meteo.uni-leipzig.de/~drops/issw4/| 4th International Summer Snowfall Workshop 2023]] | * Conference Program Committee Member: [[https://ams.confex.com/ams/38RADAR/webprogram/meeting.html|AMS 38th Conference on Radar Meteorology 2017]], [[http://erad2016.mgm.gov.tr/|9th European Conference on Radar in Meteorology 2016]], [[http://www.met.reading.ac.uk/~sws04cdw/issw3_programme.html| 3rd International Summer Snowfall Workshop 2021]], [[https://monsun.meteo.uni-leipzig.de/~drops/issw4/| 4th International Summer Snowfall Workshop 2023]] |
* Organizer: Young Scientists Networking Meeting at the AMS 38th Conference on Radar Meteorology 2017 | * Organizer: Young Scientists Networking Meeting at the AMS 38th Conference on Radar Meteorology 2017 |
===== Publications ===== | ===== Publications ===== |
| |
drOPS team members are __underlined__. //Data (DXX) und code (CXX) publications are in italic.// | drOPS team members are in **bold**. //Data (DXX) und code (CXX) publications are in italic.// |
| |
**Submitted/in review** | **Submitted/in review** |
| * Kötsche, A., A. Myagkov, **M. Maahn**, **V. Ettrichraetz**, T. Vogl, A. Ryzhkov, P. Bukovcic, D. Ori, and H. Kalesse-Los, 2025: Investigating KDP signatures inside and below the dendritic growth layer with W-band doppler radar and in situ snowfall camera. EGUsphere **(in review for to ACP)**, https://doi.org/10.5194/egusphere-2025-734. |
43) __Maherndl, N.__, A. Battaglia, A. Kötsche, and **M. Maahn**, 2025: Riming-dependent snowfall rate and ice water content retrievals for W-band cloud radar. ** EGUsphere (in review for AMT)**, https://doi.org/10.5194/egusphere-2024-3916.\\ | * **Maherndl, N.**, A. Battaglia, A. Kötsche, and **M. Maahn**, 2025: Riming-dependent snowfall rate and ice water content retrievals for W-band cloud radar. EGUsphere (**in review for AMT**), 1–27, https://doi.org/10.5194/egusphere-2024-3916. |
42) Scarsi, F. E., A. Battaglia, **M. Maahn**, and S. Lhermitte, 2024: How to reduce sampling errors in spaceborne cloud radar-based snowfall estimates. **EGUsphere (in review for TC)**, 1–23, https://doi.org/10.5194/egusphere-2024-1917.\\ | * Scarsi, F. E., A. Battaglia, **M. Maahn**, and S. Lhermitte, 2024: How to reduce sampling errors in spaceborne cloud radar-based snowfall estimates. **EGUsphere (in review for TC)**, 1–23, https://doi.org/10.5194/egusphere-2024-1917.\\ |
41) Ehrlich, A., S. Crewell, A. Herber, M. Klingebiel, C. Lüpkes, M. Mech, S. Becker, S. Borrmann, H. Bozem, M. Buschmann, H.-C. Clemen, E. De La Torre Castro, H. Dorff, R. Dupuy, O. Eppers, F. Ewald, G. George, A. Giez, S. Grawe, C. Gourbeyre, J. Hartmann, E. Jäkel, P. Joppe, O. Jourdan, Z. Jurányi, B. Kirbus, J. Lucke, A. E. Luebke, **M. Maahn**, __N. Maherndl__, C. Mallaun, J. Mayer, S. Mertes, G. Mioche, M. Moser, H. Müller, V. Pörtge, N. Risse, G. Roberts, S. Rosenburg, J. Röttenbacher, M. Schäfer, J. Schaefer, A. Schäfler, I. Schirmacher, J. Schneider, S. Schnitt, F. Stratmann, C. Tatzelt, C. Voigt, A. Walbröl, A. Weber, B. Wetzel, M. Wirth, and M. Wendisch, 2024: A comprehensive in-situ and remote sensing data set collected during the HALO–(AC) 3 aircraft campaign. ** EGUsphere (in review for ESSD)**, https://doi.org/10.5194/essd-2024-281.\\ | * Ehrlich, A., S. Crewell, A. Herber, M. Klingebiel, C. Lüpkes, M. Mech, S. Becker, S. Borrmann, H. Bozem, M. Buschmann, H.-C. Clemen, E. De La Torre Castro, H. Dorff, R. Dupuy, O. Eppers, F. Ewald, G. George, A. Giez, S. Grawe, C. Gourbeyre, J. Hartmann, E. Jäkel, P. Joppe, O. Jourdan, Z. Jurányi, B. Kirbus, J. Lucke, A. E. Luebke, **M. Maahn**, **N. Maherndl**, C. Mallaun, J. Mayer, S. Mertes, G. Mioche, M. Moser, H. Müller, V. Pörtge, N. Risse, G. Roberts, S. Rosenburg, J. Röttenbacher, M. Schäfer, J. Schaefer, A. Schäfler, I. Schirmacher, J. Schneider, S. Schnitt, F. Stratmann, C. Tatzelt, C. Voigt, A. Walbröl, A. Weber, B. Wetzel, M. Wirth, and M. Wendisch, 2024: A comprehensive in-situ and remote sensing data set collected during the HALO–(AC) 3 aircraft campaign. ** EGUsphere (in review for ESSD)**, https://doi.org/10.5194/essd-2024-281.\\ |
| |
**2024** | **2024** |
| |
40) __Maherndl, N.__, M. Moser, J. Lucke, M. Mech, N. Risse, I. Schirmacher, and **M. Maahn**, 2024: Quantifying riming from airborne data during the HALO-(AC)3 campaign. Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024.\\ | 40) **Maherndl, N.**, M. Moser, I. Schirmacher, A. Bansemer, J. Lucke, C. Voigt, and **M. Maahn**, 2024: How does riming influence the observed spatial variability of ice water in mixed-phase clouds? Atmos. Chem. Phys., 24, 13935–13960, https://doi.org/10.5194/10.5194/acp-24-13935-2024.\\ |
39) Wendisch, M., and coauthors (including **M. Maahn**, __N. Maherndl__), 2024: Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)3 aircraft campaign. Atmospheric Chemistry and Physics, 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024.\\ | 39) Wendisch, M., and coauthors (including **M. Maahn**, **N. Maherndl**), 2024: Overview: quasi-Lagrangian observations of Arctic air mass transformations – introduction and initial results of the HALO–(𝒜 𝒞)3 aircraft campaign. Atmospheric Chemistry and Physics, 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024.\\ |
38) Mahecha, M. D., A. Bastos, F. J. Bohn, N. Eisenhauer, H. Feilhauer, T. Hickler, H. Kalesse-Los, M. Migliavacca, F. E. L. Otto, J. Peng, S. Sippel, I. Tegen, A. Weigelt, M. Wendisch, C. Wirth, D. Al-Halbouni, H. Deneke, D. Doktor, S. Dunker, G. Duveiller, A. Ehrlich, A. Foth, A. García-García, C. A. Guerra, C. Guimarães-Steinicke, H. Hartmann, S. Henning, H. Herrmann, P. Hu, C. Ji, T. Kattenborn, N. Kolleck, M. Kretschmer, I. Kühn, M. L. Luttkus, **M. Maahn**, M. Mönks, K. Mora, M. Pöhlker, M. Reichstein, N. Rüger, B. Sánchez-Parra, M. Schäfer, F. Stratmann, M. Tesche, B. Wehner, S. Wieneke, A. J. Winkler, S. Wolf, S. Zaehle, J. Zscheischler, and J. Quaas, 2024: Biodiversity and Climate Extremes: Known Interactions and Research Gaps. Earth’s Future, 12, e2023EF003963, https://doi.org/10.5194/10.1029/2023EF003963.\\ | 38) Mahecha, M. D., A. Bastos, F. J. Bohn, N. Eisenhauer, H. Feilhauer, T. Hickler, H. Kalesse-Los, M. Migliavacca, F. E. L. Otto, J. Peng, S. Sippel, I. Tegen, A. Weigelt, M. Wendisch, C. Wirth, D. Al-Halbouni, H. Deneke, D. Doktor, S. Dunker, G. Duveiller, A. Ehrlich, A. Foth, A. García-García, C. A. Guerra, C. Guimarães-Steinicke, H. Hartmann, S. Henning, H. Herrmann, P. Hu, C. Ji, T. Kattenborn, N. Kolleck, M. Kretschmer, I. Kühn, M. L. Luttkus, **M. Maahn**, M. Mönks, K. Mora, M. Pöhlker, M. Reichstein, N. Rüger, B. Sánchez-Parra, M. Schäfer, F. Stratmann, M. Tesche, B. Wehner, S. Wieneke, A. J. Winkler, S. Wolf, S. Zaehle, J. Zscheischler, and J. Quaas, 2024: Biodiversity and Climate Extremes: Known Interactions and Research Gaps. Earth’s Future, 12, e2023EF003963, https://doi.org/10.5194/10.1029/2023EF003963.\\ |
37) Lee, J., P. Seifert, T. Hashino, **M. Maahn**, F. Senf, and O. Knoth, 2024: Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds. Atmospheric Chemistry and Physics, 24, 5737–5756, https://doi.org/10.5194/10.5194/acp-24-5737-2024.\\ | 37) Lee, J., P. Seifert, T. Hashino, **M. Maahn**, F. Senf, and O. Knoth, 2024: Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds. Atmospheric Chemistry and Physics, 24, 5737–5756, https://doi.org/10.5194/10.5194/acp-24-5737-2024.\\ |
36) __Maherndl, N.__, M. Moser, J. Lucke, M. Mech, N. Risse, I. Schirmacher, and **M. Maahn**, 2024: Quantifying riming from airborne data during HALO-(AC)3. Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024.\\ | 36) **Maherndl, N.**, M. Moser, J. Lucke, M. Mech, N. Risse, I. Schirmacher, and **M. Maahn**, 2024: Quantifying riming from airborne data during HALO-(AC)3. Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024.\\ |
35) **Maahn, M.**, D. Moisseev, __I. Steinke__, __N. Maherndl__, and M. D. Shupe, 2024: Introducing the Video In Situ Snowfall Sensor (VISSS). Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024.\\ | 35) **Maahn, M.**, D. Moisseev, **I. Steinke**, **N. Maherndl**, and M. D. Shupe, 2024: Introducing the Video In Situ Snowfall Sensor (VISSS). Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024.\\ |
D10) //Ehrlich, A., M. Wendisch, S. Crewell, C. Lüpkes, M. Mech, M. Klingebiel, F. Ament, S. Borrmann, H. Dorff, F. Ewald, G. George, I. Gorodetskaya, S. Groß, **M. Maahn**, M. Moser, R. Neggers, D. Ori, F. Pithan, V. Pörtge, J. Röttenbacher, V. Schemann, J. Schneider, C. Voigt, and A. Walbröl, 2024: Collection of flight reports from the HALO-(AC)³ campaign. https://doi.org/10.5281/zenodo.11184578. //\\ | D10) //Ehrlich, A., M. Wendisch, S. Crewell, C. Lüpkes, M. Mech, M. Klingebiel, F. Ament, S. Borrmann, H. Dorff, F. Ewald, G. George, I. Gorodetskaya, S. Groß, **M. Maahn**, M. Moser, R. Neggers, D. Ori, F. Pithan, V. Pörtge, J. Röttenbacher, V. Schemann, J. Schneider, C. Voigt, and A. Walbröl, 2024: Collection of flight reports from the HALO-(AC)³ campaign. https://doi.org/10.5281/zenodo.11184578. //\\ |
D9) //**Maahn, M.**, and __N. Maherndl__, 2024: Video In Situ Snowfall Sensor (VISSS) data for Ny-Ålesund (July 2022 - December 2023). https://doi.org/10.1594/PANGAEA.965766. //\\ | D9) //**Maahn, M.**, and **N. Maherndl**, 2024: Video In Situ Snowfall Sensor (VISSS) data for Ny-Ålesund (July 2022 - December 2023). https://doi.org/10.1594/PANGAEA.965766. //\\ |
D8) //**Maahn, M.**, and S. Wolter, 2024: Hardware design of the Video In Situ Snowfall Sensor v3 (VISSS3). https://doi.org/10.5281/zenodo.10526898. //\\ | D8) //**Maahn, M.**, and S. Wolter, 2024: Hardware design of the Video In Situ Snowfall Sensor v3 (VISSS3). https://doi.org/10.5281/zenodo.10526898. //\\ |
D7) //**Maahn, M.**, __V. Ettrichraetz__, and __I. Steinke__, 2024: VISSS Raw data from SAIL at Gothic from November 2022 to June 2023, https://doi.org/10.5439/2278627. //\\ | D7) //**Maahn, M.**, **V. Ettrichraetz**, and **I. Steinke**, 2024: VISSS Raw data from SAIL at Gothic from November 2022 to June 2023, https://doi.org/10.5439/2278627. //\\ |
| |
**2023** | **2023** |
| |
34) Rizik, A., A. Battaglia, F. Tridon, F. E. Scarsi, A. Kötsche, H. Kalesse-Los, **M. Maahn**, and A. Illingworth, 2023: Impact of Crosstalk on Reflectivity and Doppler Measurements for the WIVERN Polarization Diversity Doppler Radar. IEEE Trans. Geosci. Remote Sens., 61, 1–14, https://doi.org/10.1109/TGRS.2023.3320287. {{ :user:mmaahn:tgrs3320287.pdf |PDF}}\\ | 34) Rizik, A., A. Battaglia, F. Tridon, F. E. Scarsi, A. Kötsche, H. Kalesse-Los, **M. Maahn**, and A. Illingworth, 2023: Impact of Crosstalk on Reflectivity and Doppler Measurements for the WIVERN Polarization Diversity Doppler Radar. IEEE Trans. Geosci. Remote Sens., 61, 1–14, https://doi.org/10.1109/TGRS.2023.3320287. {{ :user:mmaahn:tgrs3320287.pdf |PDF}}\\ |
33) __Maherndl, N.__, **M. Maahn**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh–Gans approximation. Q.J.R. Meteorol. Soc., https://doi.org/10.1002/qj.4573. \\ | 33) **Maherndl, N.**, **M. Maahn**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh–Gans approximation. Q.J.R. Meteorol. Soc., https://doi.org/10.1002/qj.4573. \\ |
32) Wendisch, M., and Coauthors (including **M. Maahn**), 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project. Bull. Amer. Meteor. Soc., 1, https://doi.org/10.1175/BAMS-D-21-0218.1. \\ | 32) Wendisch, M., and Coauthors (including **M. Maahn**), 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project. Bull. Amer. Meteor. Soc., 1, https://doi.org/10.1175/BAMS-D-21-0218.1. \\ |
C5) //**Maahn, M.**, 2023: Video In Situ Snowfall Sensor (VISSS) data processing library V2023.1.6. https://doi.org/10.5281/zenodo.7650394. //\\ | C5) //**Maahn, M.**, 2023: Video In Situ Snowfall Sensor (VISSS) data processing library V2023.1.6. https://doi.org/10.5281/zenodo.7650394. //\\ |
C4) //**Maahn, M.**, 2023: Video In Situ Snowfall Sensor (VISSS) data acquisition software V0.3.1. https://doi.org/10.5281/zenodo.7640801. // \\ | C4) //**Maahn, M.**, 2023: Video In Situ Snowfall Sensor (VISSS) data acquisition software V0.3.1. https://doi.org/10.5281/zenodo.7640801. // \\ |
D6) // __Maherndl. N.__, **Maahn, M.**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: Data set of simulated rimed aggregates for “A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh-Gans approximation.” https://doi.org/10.5281/zenodo.7757034. https://zenodo.org/records/7757034. //\\ | D6) // **Maherndl. N.**, **Maahn, M.**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: Data set of simulated rimed aggregates for “A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh-Gans approximation.” https://doi.org/10.5281/zenodo.7757034. https://zenodo.org/records/7757034. //\\ |
D5) // **Maahn, M.**, and __N. Maherndl__, 2023: Video In Situ Snowfall Sensor (VISSS) data for Ny-Ålesund (2021-2023). https://doi.org/10.1594/PANGAEA.958537. //\\ | D5) // **Maahn, M.**, and **N. Maherndl**, 2023: Video In Situ Snowfall Sensor (VISSS) data for Ny-Ålesund (2021-2023). https://doi.org/10.1594/PANGAEA.958537. //\\ |
D4) // **Maahn, M.**, and D. Moisseev, 2023: Video In Situ Snowfall Sensor (VISSS) data for Hyytiälä (2021-2022). https://doi.org/10.1594/PANGAEA.959046. //\\ | D4) // **Maahn, M.**, and D. Moisseev, 2023: Video In Situ Snowfall Sensor (VISSS) data for Hyytiälä (2021-2022). https://doi.org/10.1594/PANGAEA.959046. //\\ |
D3) //**Maahn, M.**, C. J. Cox, M. R. Gallagher, J. K. Hutchings, M. D. Shupe, and U. Taneil, 2023: Video In Situ Snowfall Sensor (VISSS) data from MOSAiC expedition with POLARSTERN (2019-2020). https://doi.org/10.1594/PANGAEA.960391. //\\ | D3) //**Maahn, M.**, C. J. Cox, M. R. Gallagher, J. K. Hutchings, M. D. Shupe, and U. Taneil, 2023: Video In Situ Snowfall Sensor (VISSS) data from MOSAiC expedition with POLARSTERN (2019-2020). https://doi.org/10.1594/PANGAEA.960391. //\\ |
**2020** | **2020** |
| |
25) **Maahn, M.**, D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G. Mace, and J. M. Comstock, 2020: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. Bull. Amer. Meteor. Soc., 101, E1512–E1523, https://doi.org/10.1175/BAMS-D-19-0027.1. __{{ :user:mmaahn:bams_february_2021.pdf |Three page summary of the article}}__ \\ | 25) **Maahn, M.**, D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G. Mace, and J. M. Comstock, 2020: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. Bull. Amer. Meteor. Soc., 101, E1512–E1523, https://doi.org/10.1175/BAMS-D-19-0027.1. **{{ :user:mmaahn:bams_february_2021.pdf |Three page summary of the article}}** \\ |
24) Matrosov, S. Y., A. V. Ryzhkov, **M. Maahn**, and G. de Boer, 2020: Hydrometeor Shape Variability in Snowfall as Retrieved from Polarimetric Radar Measurements. J. Appl. Meteor. Climatol., 59, 1503–1517, https://doi.org/10.1175/JAMC-D-20-0052.1.\\ | 24) Matrosov, S. Y., A. V. Ryzhkov, **M. Maahn**, and G. de Boer, 2020: Hydrometeor Shape Variability in Snowfall as Retrieved from Polarimetric Radar Measurements. J. Appl. Meteor. Climatol., 59, 1503–1517, https://doi.org/10.1175/JAMC-D-20-0052.1.\\ |
23) Mech, M., **M. Maahn**, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020.\\ | 23) Mech, M., **M. Maahn**, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020.\\ |