user:mmaahn

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
user:mmaahn [2023/11/24 09:07] – [Grants] Maximilian Maahnuser:mmaahn [2024/03/25 08:01] (current) Maximilian Maahn
Line 5: Line 5:
  
 <panel type="primary" title="News" > <panel type="primary" title="News" >
-  * The ESA Earth Explorer 11 candidate satellite mission [[https://wivern.polito.it/|WIVERN]] has been selected for phase A![[https://www.physes.uni-leipzig.de/institut-fuer-meteorologie/aktuelles/newsdetail/artikel/entscheidender-fortschritt-fuer-esa-satellitenmission-zur-beobachtung-von-wind-innerhalb-von-wolken-2023-11-23|German News]], [[https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Cairt_and_Wivern_Earth_Explorer_candidates_go_forward|English news]]+  * The [[https://unileipzig.pageflow.io/dem-schnee-auf-der-spur|multimedia feature about our contribution to the SAIL campaign]] is now online.    
 +  * The ESA Earth Explorer 11 candidate satellite mission [[https://wivern.polito.it/|WIVERN]] has been selected for phase A![[https://www.physes.uni-leipzig.de/institut-fuer-meteorologie/aktuelles/newsdetail/artikel/entscheidender-fortschritt-fuer-esa-satellitenmission-zur-beobachtung-von-wind-innerhalb-von-wolken-2023-11-23|German News]],  [[https://www.uni-leipzig.de/newsdetail/artikel/bessere-wettervorhersagen-mit-hilfe-aus-dem-all-2023-12-01|German Interview]],  [[https://www.esa.int/Applications/Observing_the_Earth/FutureEO/Cairt_and_Wivern_Earth_Explorer_candidates_go_forward|English news]]
   * Check out the preprint of our new VISSS paper [[https://egusphere.copernicus.org/preprints/2023/egusphere-2023-655]]   * Check out the preprint of our new VISSS paper [[https://egusphere.copernicus.org/preprints/2023/egusphere-2023-655]]
   * Read a background article (in German) about our contribution to the SAIL campaign in Colorado [[https://magazin.uni-leipzig.de/bloggen/bloggen/artikel/dem-schnee-auf-der-spur-messkampagne-auf-ueber-2800-metern-hoehe-2023-01-02|Leipziger Universitäts Magazin]]   * Read a background article (in German) about our contribution to the SAIL campaign in Colorado [[https://magazin.uni-leipzig.de/bloggen/bloggen/artikel/dem-schnee-auf-der-spur-messkampagne-auf-ueber-2800-metern-hoehe-2023-01-02|Leipziger Universitäts Magazin]]
Line 54: Line 55:
 ===== Professional Activities ===== ===== Professional Activities =====
   * Member [[https://wivern.polito.it/|ESA WIVERN]] Mission Advisory Group (since 2021), [[https://www.arm.gov/about/constituent-groups/uec|ARM User Executive Committee]] (2018 - 2020)   * Member [[https://wivern.polito.it/|ESA WIVERN]] Mission Advisory Group (since 2021), [[https://www.arm.gov/about/constituent-groups/uec|ARM User Executive Committee]] (2018 - 2020)
-  * Associate Editor[[https://www.atmospheric-measurement-techniques.net|Atmospheric Measurement Techniques]] (since 2020), [[https://journals.ametsoc.org/toc/apme/current|Journal of Applied Meteorology and Climatology]] (2016 - 2020)+  * Editor [[https://www.atmospheric-measurement-techniques.net|Atmospheric Measurement Techniques]] (since 2020), Associate Editor [[https://journals.ametsoc.org/toc/apme/current|Journal of Applied Meteorology and Climatology]] (2016 - 2020)
   * Reviewer (proposals): DOE Atmospheric System Research program, Swiss National Science Foundation (SNSF)   * Reviewer (proposals): DOE Atmospheric System Research program, Swiss National Science Foundation (SNSF)
   * Conference Program Committee Member: [[https://ams.confex.com/ams/38RADAR/webprogram/meeting.html|AMS 38th Conference on Radar Meteorology 2017]], [[http://erad2016.mgm.gov.tr/|9th European Conference on Radar in Meteorology 2016]], [[http://www.met.reading.ac.uk/~sws04cdw/issw3_programme.html| 3rd International Summer Snowfall Workshop 2021]], [[https://monsun.meteo.uni-leipzig.de/~drops/issw4/| 4th International Summer Snowfall Workshop 2023]]   * Conference Program Committee Member: [[https://ams.confex.com/ams/38RADAR/webprogram/meeting.html|AMS 38th Conference on Radar Meteorology 2017]], [[http://erad2016.mgm.gov.tr/|9th European Conference on Radar in Meteorology 2016]], [[http://www.met.reading.ac.uk/~sws04cdw/issw3_programme.html| 3rd International Summer Snowfall Workshop 2021]], [[https://monsun.meteo.uni-leipzig.de/~drops/issw4/| 4th International Summer Snowfall Workshop 2023]]
Line 77: Line 78:
 ===== Publications ===== ===== Publications =====
  
-drOPS team members are __underlined__.+drOPS team members are __underlined__. //Data (DXX) und code (CXX) publications are in italic.//
  
 **Submitted/in review** **Submitted/in review**
  
-38) Mahecha, M. D., and coauthors (including **M. Maahn**), 2023: Biodiversity and climate extremes: known interactions and research gaps. Earth’s Future, **submitted**, https://doi.org/10.22541/essoar.169462031.19744802/v1.\\  +39) Wendisch, M., and coauthors (including **M. Maahn**, __N. Maherndl__), 2024: Overview: Quasi-Lagrangian observations of Arctic air mass transformations – Introduction and initial results of the HALO–(AC)3 aircraft campaign. ACP/EGUsphere, **submitted**\\ 
-37) Lee, J., P. Seifert, T. Hashino, **M. Maahn**, F. Senf, and O. Knoth, 2023: Numerical evidence that the impact of CCN and INP concentrations on mixed-phase clouds is observable with cloud radars. ACP/EGUsphere, **in review**, https://doi.org/10.5194/egusphere-2023-1887.\\ +38) Mahecha, M. D., and coauthors (including **M. Maahn**), 2023: Biodiversity and climate extremes: known interactions and research gaps. Earth’s Future, **in review**, https://doi.org/10.22541/essoar.169462031.19744802/v1.\\  
-36) __Maherndl, N.__, M. Moser, J. Lucke, M. Mech, N. Risse, I. Schirmacher, and **M. Maahn**, 2023: Quantifying riming from airborne data during HALO-(AC)3. AMT/EGUsphere**in review**132, https://doi.org/10.5194/egusphere-2023-1118.\\ + 
-35) **Maahn, M.**, D. Moisseev, __I. Steinke__, __N. Maherndl__, and M. D. Shupe, 2023: Introducing the Video In Situ Snowfall Sensor (VISSS). AMT/EGUsphere, **in review**, 1–27, https://doi.org/10.5194/egusphere-2023-655.\\+**2024** 
 + 
 +37) Lee, J., P. Seifert, T. Hashino, **M. Maahn**, F. Senf, and O. Knoth, 2023: Numerical evidence that the impact of CCN and INP concentrations on mixed-phase clouds is observable with cloud radars. ACP/EGUsphere, **accepted**, https://doi.org/10.5194/egusphere-2023-1887.\\ 
 +36) __Maherndl, N.__, M. Moser, J. Lucke, M. Mech, N. Risse, I. Schirmacher, and **M. Maahn**, 2024: Quantifying riming from airborne data during HALO-(AC)3. Atmos. Meas. Tech.1714751495, https://doi.org/10.5194/amt-17-1475-2024.\\ 
 +35) **Maahn, M.**, D. Moisseev, __I. Steinke__, __N. Maherndl__, and M. D. Shupe, 2024: Introducing the Video In Situ Snowfall Sensor (VISSS). Atmos. Meas. Tech.17, 899–919, https://doi.org/10.5194/amt-17-899-2024.\\ 
 +D8) //**Maahn, M.**, and S. Wolter2024: Hardware design of the Video In Situ Snowfall Sensor v3 (VISSS3). https://doi.org/10.5281/zenodo.10526898. //\\ 
 +D7) //**Maahn, M.**, __V. Ettrichraetz__, and __I. Steinke__, 2024: VISSS Raw data from SAIL at Gothic from November 2022 to June 2023, https://doi.org/10.5439/2278627. //\\
  
 **2023** **2023**
Line 91: Line 98:
 33) __Maherndl, N.__, **M. Maahn**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh–Gans approximation. Q.J.R. Meteorol. Soc., https://doi.org/10.1002/qj.4573. \\ 33) __Maherndl, N.__, **M. Maahn**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh–Gans approximation. Q.J.R. Meteorol. Soc., https://doi.org/10.1002/qj.4573. \\
 32) Wendisch, M., and Coauthors (including **M. Maahn**), 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project. Bull. Amer. Meteor. Soc., 1, https://doi.org/10.1175/BAMS-D-21-0218.1. \\ 32) Wendisch, M., and Coauthors (including **M. Maahn**), 2023: Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project. Bull. Amer. Meteor. Soc., 1, https://doi.org/10.1175/BAMS-D-21-0218.1. \\
 +C5) //**Maahn, M.**, 2023: Video In Situ Snowfall Sensor (VISSS) data processing library  V2023.1.6. https://doi.org/10.5281/zenodo.7650394.  //\\
 +C4) //**Maahn, M.**, 2023: Video In Situ Snowfall Sensor (VISSS) data acquisition software V0.3.1. https://doi.org/10.5281/zenodo.7640801. // \\
 +D6) // __Maherndl. N.__, **Maahn, M.**, F. Tridon, J. Leinonen, D. Ori, and S. Kneifel, 2023: Data set of simulated rimed aggregates for “A riming-dependent parameterization of scattering by snowflakes using the self-similar Rayleigh-Gans approximation.” https://doi.org/10.5281/zenodo.7757034. https://zenodo.org/records/7757034. //\\
 +D5) // **Maahn, M.**, and __N. Maherndl__, 2023: Video In Situ Snowfall Sensor (VISSS) data for Ny-Ålesund (2021-2023). https://doi.org/10.1594/PANGAEA.958537. //\\
 +D4) // **Maahn, M.**, and D. Moisseev, 2023: Video In Situ Snowfall Sensor (VISSS) data for Hyytiälä (2021-2022). https://doi.org/10.1594/PANGAEA.959046. //\\
 +D3) //**Maahn, M.**, C. J. Cox, M. R. Gallagher, J. K. Hutchings, M. D. Shupe, and U. Taneil, 2023: Video In Situ Snowfall Sensor (VISSS) data from MOSAiC expedition with POLARSTERN (2019-2020). https://doi.org/10.1594/PANGAEA.960391. //\\
 +D2) //**Maahn, M.**, R. Haseneder-Lind, and P. Krobot, 2023: Hardware design of the Video In Situ Snowfall Sensor v2 (VISSS2). https://doi.org/10.5281/zenodo.7640821. //\\
 +
  
 **2022** **2022**
Line 106: Line 121:
 **2020** **2020**
  
-25) **Maahn, M.**, D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G. Mace, and J. M. Comstock, 2020: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. Bull. Amer. Meteor. Soc., 101, E1512–E1523, doi:https://doi.org/10.1175/BAMS-D-19-0027.1. __{{ :user:mmaahn:bams_february_2021.pdf |Three page summary of the article}}__ \\ +25) **Maahn, M.**, D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G. Mace, and J. M. Comstock, 2020: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. Bull. Amer. Meteor. Soc., 101, E1512–E1523, https://doi.org/10.1175/BAMS-D-19-0027.1. __{{ :user:mmaahn:bams_february_2021.pdf |Three page summary of the article}}__ \\ 
-24) Matrosov, S. Y., A. V. Ryzhkov, **M. Maahn**, and G. de Boer, 2020: Hydrometeor Shape Variability in Snowfall as Retrieved from Polarimetric Radar Measurements. J. Appl. Meteor. Climatol., 59, 1503–1517, doi:https://doi.org/10.1175/JAMC-D-20-0052.1.\\ +24) Matrosov, S. Y., A. V. Ryzhkov, **M. Maahn**, and G. de Boer, 2020: Hydrometeor Shape Variability in Snowfall as Retrieved from Polarimetric Radar Measurements. J. Appl. Meteor. Climatol., 59, 1503–1517, https://doi.org/10.1175/JAMC-D-20-0052.1.\\ 
-23) Mech, M., **M. Maahn**, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geosci. Model Dev., 13, 4229–4251, doi:https://doi.org/10.5194/gmd-13-4229-2020.\\+23) Mech, M., **M. Maahn**, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020.\\ 
 +C3) //**Maahn, M.**, 2020: “pyOptimalEstimation” Package. https://github.com/maahn/pyOptimalEstimation. //\\
  
 **2019** **2019**
  
-22) Acquistapace, C., U. Löhnert, **M. Maahn**, and P. Kollias, 2019: A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing. J. Atmos. Oceanic Technol., 36, 781–801, doi:https://doi.org/10.1175/JTECH-D-18-0158.1.\\ +22) Acquistapace, C., U. Löhnert, **M. Maahn**, and P. Kollias, 2019: A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing. J. Atmos. Oceanic Technol., 36, 781–801, https://doi.org/10.1175/JTECH-D-18-0158.1.\\ 
-21) Ghate, V. P., P. Kollias, S. Crewell, A. M. Fridlind, T. Heus, U. Löehnert, **M. Maahn**, G. M. McFarquhar, D. Moisseev, M. Oue, M. Wendisch, and C. Williams, 2019: The Second ARM Training and Science Application Event: Training the Next Generation of Atmospheric Scientists. Bull. Amer. Meteor. Soc., 100, ES5–ES9, doi:https://doi.org/10.1175/BAMS-D-18-0242.1.\\ +21) Ghate, V. P., P. Kollias, S. Crewell, A. M. Fridlind, T. Heus, U. Löehnert, **M. Maahn**, G. M. McFarquhar, D. Moisseev, M. Oue, M. Wendisch, and C. Williams, 2019: The Second ARM Training and Science Application Event: Training the Next Generation of Atmospheric Scientists. Bull. Amer. Meteor. Soc., 100, ES5–ES9, https://doi.org/10.1175/BAMS-D-18-0242.1.\\ 
-20) **Maahn, M.**, F. Hoffmann, M. D. Shupe, G. de Boer, S. Y. Matrosov, and E. P. Luke, 2019: Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration? Atmos. Meas. Tech., 12, 3151–3171, doi:https://doi.org/10.5194/amt-12-3151-2019.\\ +20) **Maahn, M.**, F. Hoffmann, M. D. Shupe, G. de Boer, S. Y. Matrosov, and E. P. Luke, 2019: Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration? Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019.\\ 
-19) Matrosov, S. Y., **M. Maahn**, and G. de Boer, 2019: Observational and Modeling Study of Ice Hydrometeor Radar Dual-Wavelength Ratios. J. Appl. Meteor. Climatol., 58, 2005–2017, doi:https://doi.org/10.1175/JAMC-D-19-0018.1.\\+19) Matrosov, S. Y., **M. Maahn**, and G. de Boer, 2019: Observational and Modeling Study of Ice Hydrometeor Radar Dual-Wavelength Ratios. J. Appl. Meteor. Climatol., 58, 2005–2017, https://doi.org/10.1175/JAMC-D-19-0018.1.\\ 
 +C2) //**Maahn, M.**, and D. Ori, 2019: maahn/pamtra2: calibrationPaper_v1. https://doi.org/10.5281/zenodo.2552448. //\\ 
 +D1) //**Maahn, M.**, 2019: MASC Snowparticle Images. https://doi.org/10.5439/1497701. //\\
  
 **2018** **2018**
  
-18) de Boer, G., M. Ivey, B. Schmid, D. Lawrence, D. Dexheimer, F. Mei, J. Hubbe, A. Bendure, J. Hardesty, M. D. Shupe, A. McComiskey, H. Telg, C. Schmitt, S. Y. Matrosov, I. Brooks, J. Creamean, A. Solomon, D. D. Turner, C. Williams, **M. Maahn**, B. Argrow, S. Palo, C. N. Long, R.-S. Gao, and J. Mather, 2018: A Bird’s-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska. Bull. Amer. Meteor. Soc., 99, 1197–1212, doi:https://doi.org/10.1175/BAMS-D-17-0156.1.\\ +18) de Boer, G., M. Ivey, B. Schmid, D. Lawrence, D. Dexheimer, F. Mei, J. Hubbe, A. Bendure, J. Hardesty, M. D. Shupe, A. McComiskey, H. Telg, C. Schmitt, S. Y. Matrosov, I. Brooks, J. Creamean, A. Solomon, D. D. Turner, C. Williams, **M. Maahn**, B. Argrow, S. Palo, C. N. Long, R.-S. Gao, and J. Mather, 2018: A Bird’s-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska. Bull. Amer. Meteor. Soc., 99, 1197–1212, https://doi.org/10.1175/BAMS-D-17-0156.1.\\ 
-17) Creamean, J. M., R. M. Kirpes, K. A. Pratt, N. J. Spada, **M. Maahn**, G. de Boer, R. C. Schnell, and S. China, 2018: Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmos. Chem. Phys., 18, 18023–18042, doi:https://doi.org/10.5194/acp-18-18023-2018.\\ +17) Creamean, J. M., R. M. Kirpes, K. A. Pratt, N. J. Spada, **M. Maahn**, G. de Boer, R. C. Schnell, and S. China, 2018: Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmos. Chem. Phys., 18, 18023–18042, https://doi.org/10.5194/acp-18-18023-2018.\\ 
-16) Creamean, J. M., **M. Maahn**, G. de Boer, A. McComiskey, A. J. Sedlacek, and Y. Feng, 2018: The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska. Atmos. Chem. Phys., 18, 555–570, doi:https://doi.org/10.5194/acp-18-555-2018.\\ +16) Creamean, J. M., **M. Maahn**, G. de Boer, A. McComiskey, A. J. Sedlacek, and Y. Feng, 2018: The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska. Atmos. Chem. Phys., 18, 555–570, https://doi.org/10.5194/acp-18-555-2018.\\ 
-15) Solomon, A., G. de Boer, J. M. Creamean, A. McComiskey, M. D. Shupe, **M. Maahn**, and C. Cox, 2018: The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds. Atmos. Chem. Phys., 18, 17047–17059, doi:https://doi.org/10.5194/acp-18-17047-2018.\\ +15) Solomon, A., G. de Boer, J. M. Creamean, A. McComiskey, M. D. Shupe, **M. Maahn**, and C. Cox, 2018: The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds. Atmos. Chem. Phys., 18, 17047–17059, https://doi.org/10.5194/acp-18-17047-2018.\\ 
-14) Williams, C. R., **M. Maahn**, J. C. Hardin, and G. de Boer, 2018: Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra. Atmos. Meas. Tech., 11, 4963–4980, doi:https://doi.org/10.5194/amt-11-4963-2018.\\ +14) Williams, C. R., **M. Maahn**, J. C. Hardin, and G. de Boer, 2018: Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra. Atmos. Meas. Tech., 11, 4963–4980, https://doi.org/10.5194/amt-11-4963-2018.\\ 
-13) Acquistapace, C., S. Kneifel, U. Löhnert, P. Kollias, **M. Maahn**, and M. Bauer-Pfundstein, 2017: Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmos. Meas. Tech., 10, 1783–1802, doi:https://doi.org/10.5194/amt-10-1783-2017.\\+13) Acquistapace, C., S. Kneifel, U. Löhnert, P. Kollias, **M. Maahn**, and M. Bauer-Pfundstein, 2017: Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017.\\
  
 **2017** **2017**
  
-12) Bühl, J., S. Alexander, S. Crewell, A. Heymsfield, H. Kalesse, A. Khain, **M. Maahn**, K. Van Tricht, and M. Wendisch, 2017: Remote Sensing. Meteor. Mon., 58, 10.1-10.21, doi:https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0015.1.\\ +12) Bühl, J., S. Alexander, S. Crewell, A. Heymsfield, H. Kalesse, A. Khain, **M. Maahn**, K. Van Tricht, and M. Wendisch, 2017: Remote Sensing. Meteor. Mon., 58, 10.1-10.21, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0015.1.\\ 
-11) **Maahn, M.**, and U. Löhnert, 2017: Potential of Higher-Order Moments and Slopes of the Radar Doppler Spectrum for Retrieving Microphysical and Kinematic Properties of Arctic Ice Clouds. J. Appl. Meteor. Climatol., 56, 263–282, doi:https://doi.org/10.1175/JAMC-D-16-0020.1.\\ +11) **Maahn, M.**, and U. Löhnert, 2017: Potential of Higher-Order Moments and Slopes of the Radar Doppler Spectrum for Retrieving Microphysical and Kinematic Properties of Arctic Ice Clouds. J. Appl. Meteor. Climatol., 56, 263–282, https://doi.org/10.1175/JAMC-D-16-0020.1.\\ 
-10) **Maahn, M.**, G. de Boer, J. M. Creamean, G. Feingold, G. M. McFarquhar, W. Wu, and F. Mei, 2017: The observed influence of local anthropogenic pollution on northern Alaskan cloud properties. Atmos. Chem. Phys., 17, 14709–14726, doi:https://doi.org/10.5194/acp-17-14709-2017.\\ +10) **Maahn, M.**, G. de Boer, J. M. Creamean, G. Feingold, G. M. McFarquhar, W. Wu, and F. Mei, 2017: The observed influence of local anthropogenic pollution on northern Alaskan cloud properties. Atmos. Chem. Phys., 17, 14709–14726, https://doi.org/10.5194/acp-17-14709-2017.\\ 
-9) Matrosov, S. Y., C. G. Schmitt, **M. Maahn**, and G. de Boer, 2017: Atmospheric Ice Particle Shape Estimates from Polarimetric Radar Measurements and In Situ Observations. J. Atmos. Oceanic Technol., 34, 2569–2587, doi:https://doi.org/10.1175/JTECH-D-17-0111.1.\\ +9) Matrosov, S. Y., C. G. Schmitt, **M. Maahn**, and G. de Boer, 2017: Atmospheric Ice Particle Shape Estimates from Polarimetric Radar Measurements and In Situ Observations. J. Atmos. Oceanic Technol., 34, 2569–2587, https://doi.org/10.1175/JTECH-D-17-0111.1.\\ 
-8) Souverijns, N., A. Gossart, S. Lhermitte, I. V. Gorodetskaya, S. Kneifel, **M. Maahn**, F. L. Bliven, and N. P. M. van Lipzig, 2017: Estimating radar reflectivity - Snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations. Atmos. Res., 196, 211–223, doi:https://doi.org/10.1016/j.atmosres.2017.06.001.\\+8) Souverijns, N., A. Gossart, S. Lhermitte, I. V. Gorodetskaya, S. Kneifel, **M. Maahn**, F. L. Bliven, and N. P. M. van Lipzig, 2017: Estimating radar reflectivity - Snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations. Atmos. Res., 196, 211–223, https://doi.org/10.1016/j.atmosres.2017.06.001.\\
  
 **2016** **2016**
  
-7) Kneifel, S., P. Kollias, A. Battaglia, J. Leinonen, **M. Maahn**, H. Kalesse, and F. Tridon, 2016: First observations of triple-frequency radar Doppler spectra in snowfall: Interpretation and applications. Geophys. Res. Lett., 43, 2225–2233, doi:https://doi.org/10.1002/2015GL067618.\\+7) Kneifel, S., P. Kollias, A. Battaglia, J. Leinonen, **M. Maahn**, H. Kalesse, and F. Tridon, 2016: First observations of triple-frequency radar Doppler spectra in snowfall: Interpretation and applications. Geophys. Res. Lett., 43, 2225–2233, https://doi.org/10.1002/2015GL067618.\\
  
 **2015** **2015**
  
-6) Gorodetskaya, I. V., S. Kneifel, **M. Maahn**, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig, 2015: Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere, 9, 285–304, doi:https://doi.org/10.5194/tc-9-285-2015.\\ +6) Gorodetskaya, I. V., S. Kneifel, **M. Maahn**, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig, 2015: Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015.\\ 
-5) Löhnert, U., J. H. Schween, C. Acquistapace, K. Ebell, M. **Maahn, M.** Barrera-Verdejo, A. Hirsikko, B. Bohn, A. Knaps, E. O’Connor, C. Simmer, A. Wahner, and S. Crewell, 2015: JOYCE: Jülich Observatory for Cloud Evolution. Bull. Amer. Meteor. Soc., 96, 1157–1174, doi:https://doi.org/10.1175/BAMS-D-14-00105.1.\\ +5) Löhnert, U., J. H. Schween, C. Acquistapace, K. Ebell, M. **Maahn, M.** Barrera-Verdejo, A. Hirsikko, B. Bohn, A. Knaps, E. O’Connor, C. Simmer, A. Wahner, and S. Crewell, 2015: JOYCE: Jülich Observatory for Cloud Evolution. Bull. Amer. Meteor. Soc., 96, 1157–1174, https://doi.org/10.1175/BAMS-D-14-00105.1.\\ 
-4) **Maahn, M.**, U. Löhnert, P. Kollias, R. C. Jackson, and G. M. McFarquhar, 2015: Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of Radar Moments Using in situ Aircraft Observations. J. Atmos. Oceanic Technol., 32, 880–903, doi:https://doi.org/10.1175/JTECH-D-14-00112.1.\\+4) **Maahn, M.**, U. Löhnert, P. Kollias, R. C. Jackson, and G. M. McFarquhar, 2015: Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of Radar Moments Using in situ Aircraft Observations. J. Atmos. Oceanic Technol., 32, 880–903, https://doi.org/10.1175/JTECH-D-14-00112.1.\\
  
 **2011 - 2014** **2011 - 2014**
  
-3) **Maahn, M.**, C. Burgard, S. Crewell, I. V. Gorodetskaya, S. Kneifel, S. Lhermitte, K. Van Tricht, and N. P. M. van Lipzig, 2014: How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? J. Geophys. Res. Atmos., 119, 13604–13620, doi:https://doi.org/10.1002/2014JD022079.\\ +3) **Maahn, M.**, C. Burgard, S. Crewell, I. V. Gorodetskaya, S. Kneifel, S. Lhermitte, K. Van Tricht, and N. P. M. van Lipzig, 2014: How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? J. Geophys. Res. Atmos., 119, 13604–13620, https://doi.org/10.1002/2014JD022079.\\ 
-2) **Maahn, M.**, and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 2661–2673, doi:https://doi.org/10.5194/amt-5-2661-2012.\\ +2) **Maahn, M.**, and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 2661–2673, https://doi.org/10.5194/amt-5-2661-2012.\\ 
-1) Kneifel, S., **M. Maahn**, G. Peters, and C. Simmer, 2011: Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar). Meteorol. Atmos. Phys., 113, 75–87, doi:https://doi.org/10.1007/s00703-011-0142-z.\\+C1) //**Maahn, M.**, 2012: IMProToo - Improved Mrr Processing Tool. https://github.com/maahn/IMProToo. //\\ 
 +1) Kneifel, S., **M. Maahn**, G. Peters, and C. Simmer, 2011: Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar). Meteorol. Atmos. Phys., 113, 75–87, https://doi.org/10.1007/s00703-011-0142-z.\\
  
 ===== Invited Talks===== ===== Invited Talks=====
  • user/mmaahn.1700816846.txt.gz
  • Last modified: 2023/11/24 09:07
  • by Maximilian Maahn