user:tvogl

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
user:tvogl [2022/01/31 10:57] Teresa Vogluser:tvogl [2022/02/01 16:18] (current) Teresa Vogl
Line 5: Line 5:
  
 ===== CV ===== ===== CV =====
 +
 +===== Research Experience =====
 +
 +===== Teaching =====
  
 ===== Publications ===== ===== Publications =====
 **2022**\\ **2022**\\
-**Vogl, T.**, M. Maahn, S. Kneifel, W. Schimmel, D. Moisseev, and H. Kalesse, 2022: Using artificial neural networks to predict riming from Doppler cloud radar observations. Atmos. Meas. Tech., https://doi.org/10.5194/amt-2021-137\\+**Vogl, T.**, M. Maahn, S. Kneifel, W. Schimmel, D. Moisseev, and H. Kalesse, 2022: Using artificial neural networks to predict riming from Doppler cloud radar observations. Atmos. Meas. Tech., 15, 365–381 https://doi.org/10.5194/amt-2021-137\\ 
 +\\
 \\ \\
 **2021**\\ **2021**\\
 **Vogl, T.**, Hrdina, A., and Thomas, C. K., 2021: Choosing an optimal β factor for relaxed eddy accumulation applications across vegetated and non-vegetated surfaces. Biogeosciences, 18, 5097–5115, https://doi.org/10.5194/bg-18-5097-2021 \\ **Vogl, T.**, Hrdina, A., and Thomas, C. K., 2021: Choosing an optimal β factor for relaxed eddy accumulation applications across vegetated and non-vegetated surfaces. Biogeosciences, 18, 5097–5115, https://doi.org/10.5194/bg-18-5097-2021 \\
-Trömel, S. and Simmer, C. and Blahak, U. and Blanke, A. and Doktorowski, S. and Ewald, F. and Frech, M. and Gergely, M. and Hagen, M. and Janjic, T. and Kalesse-Los, H. and Kneifel, S. and Knote, C. and Mendrok, J. and Moser, M. and Köcher, G. and Mühlbauer, K. and Myagkov, A. and Pejcic, V. and Seifert, P. and Shrestha, P. and Teisseire, A. and von Terzi, L. and Tetoni, E. and **Vogl, T.** and Voigt, C. and Zeng, Y. and Zinner, T. and Quaas, J.: Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes, Atmos. Chem. Phys., https://doi.org/10.5194/acp-21-17291-2021, 2021.+\\ 
 +Trömel, S.Simmer, C.Blahak, U.Blanke, A.Doktorowski, S.Ewald, F.Frech, M.Gergely, M.Hagen, M.Janjic, T.Kalesse-Los, H. and Kneifel, S. and Knote, C. and Mendrok, J. and Moser, M. and Köcher, G. and Mühlbauer, K. and Myagkov, A. and Pejcic, V. and Seifert, P. and Shrestha, P. and Teisseire, A. and von Terzi, L. and Tetoni, E. and **Vogl, T.** and Voigt, C. and Zeng, Y. and Zinner, T. and Quaas, J.: Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes, Atmos. Chem. Phys., https://doi.org/10.5194/acp-21-17291-2021, 2021.\\ 
 +\\ 
 +Hartmann, M., Gong, X., Kecorius, S., van Pinxteren, M., **Vogl, T.**, Welti, A., Wex, H., Zeppenfeld, S., Herrmann, H., Wiedensohler, A., and Stratmann, F.: Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N, Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021, 2021.\\ 
 +\\ 
 +**2019**\\ 
 +Kecorius, S., **Vogl, T.**, Paasonen, P., Lampilahti, J., Rothenberg, D., Wex, H., Zeppenfeld, S., van Pinxteren, M., Hartmann, M., Henning, S., Gong, X., Welti, A., Kulmala, M., Stratmann, F., Herrmann, H., and Wiedensohler, A., 2019: New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea, Atmos. Chem. Phys., 19, 14339–14364, https://doi.org/10.5194/acp-19-14339-2019\\ 
 +\\ 
 +Kalesse, H., **Vogl, T.**, Paduraru, C., and Luke, E., 2019: Development and validation of a supervised machine learning radar Doppler spectra peak-finding algorithm, Atmos. Meas. Tech., 12, 4591–4617, https://doi.org/10.5194/amt-12-4591-2019\\ 
 +\\ 
 +Wendisch, M., Macke, A., Ehrlich, A., Lüpkes, C., Mech, M., Chechin, D., Dethloff, K., Velasco, C. B., Bozem, H., Brückner, M., Clemen, H., Crewell, S., Donth, T., Dupuy, R., Ebell, K., Egerer, U., Engelmann, R., Engler, C., Eppers, O., Gehrmann, M., Gong, X., Gottschalk, M., Gourbeyre, C., Griesche, H., Hartmann, J., Hartmann, M., Heinold, B., Herber, A., Herrmann, H., Heygster, G., Hoor, P., Jafariserajehlou, S., Jäkel, E., Järvinen, E., Jourdan, O., Kästner, U., Kecorius, S., Knudsen, E. M., Köllner, F., Kretzschmar, J., Lelli, L., Leroy, D., Maturilli, M., Mei, L., Mertes, S., Mioche, G., Neuber, R., Nicolaus, M., Nomokonova, T., Notholt, J., Palm, M., van Pinxteren, M., Quaas, J., Richter, P., Ruiz-Donoso, E., Schäfer, M., Schmieder, K., Schnaiter, M., Schneider, J., Schwarzenböck, A., Seifert, P., Shupe, M. D., Siebert, H., Spreen, G., Stapf, J., Stratmann, F., **Vogl, T.**, Welti, A., Wex, H., Wiedensohler, A., Zanatta, M., & Zeppenfeld, S., 2019. The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification. Bulletin of the American Meteorological Society, 100(5), 841-871. https://doi.org/10.1175/BAMS-D-18-0072.1\\ 
  • user/tvogl.1643626673.txt.gz
  • Last modified: 2022/01/31 10:57
  • by Teresa Vogl