user:tvogl

This is an old revision of the document!


Teresa Vogl

2022
Vogl, T., M. Maahn, S. Kneifel, W. Schimmel, D. Moisseev, and H. Kalesse, 2022: Using artificial neural networks to predict riming from Doppler cloud radar observations. Atmos. Meas. Tech., https://doi.org/10.5194/amt-2021-137


2021
Vogl, T., Hrdina, A., and Thomas, C. K., 2021: Choosing an optimal β factor for relaxed eddy accumulation applications across vegetated and non-vegetated surfaces. Biogeosciences, 18, 5097–5115, https://doi.org/10.5194/bg-18-5097-2021

Trömel, S. and Simmer, C. and Blahak, U. and Blanke, A. and Doktorowski, S. and Ewald, F. and Frech, M. and Gergely, M. and Hagen, M. and Janjic, T. and Kalesse-Los, H. and Kneifel, S. and Knote, C. and Mendrok, J. and Moser, M. and Köcher, G. and Mühlbauer, K. and Myagkov, A. and Pejcic, V. and Seifert, P. and Shrestha, P. and Teisseire, A. and von Terzi, L. and Tetoni, E. and Vogl, T. and Voigt, C. and Zeng, Y. and Zinner, T. and Quaas, J.: Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes, Atmos. Chem. Phys., https://doi.org/10.5194/acp-21-17291-2021, 2021.

Hartmann, M., Gong, X., Kecorius, S., van Pinxteren, M., Vogl, T., Welti, A., Wex, H., Zeppenfeld, S., Herrmann, H., Wiedensohler, A., and Stratmann, F.: Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N, Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021, 2021.
2020

  • user/tvogl.1643626840.txt.gz
  • Last modified: 2022/01/31 11:00
  • by Teresa Vogl