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cience relies on observations to develop theories about nature, and

to determine if those theories accurately approximate how nature

works. A wide variety of in situ and remote sensing techniques are
used to characterize, understand, and quantify properties and processes
that occur in the atmosphere and at the surface. Improving our under-
standing of these processes, and how they interact with each other and
the environment, is critically important for advancing numerical weather
prediction and climate models.

In response to this recognized need, our field has seen an explosion in
the number and diversity of remote sensing instrumentation. We are using
advanced active remote sensors such as lidars, radars of various wave-
lengths, sodars, scintillometers, and global positioning systems. We are
also using passive remote sensors like infrared spectrometers, microwave
radiometers, and imaging radiometers that operate at wavelengths from
the visible to theinfrared, and beyond. All of these instruments are taking
advantage of various physical laws, many embodied in the principles of
radiative transfer, to gain new insights into processes in the atmosphere.

There is a common thread that holds in most of these observations:
we are not actually observing what we want to know. We are trying to
extract very specific information from the remote sensing observations
that are typically only partially related to the variable of interest. In the
atmospheric sciences, we often call this inverse process a retrieval. For all
of the remote sensors, atmospheric variables of interest must be derived
from the observations within an inversion algorithm, which often requires
the use of prior constraints.

Very often, if we have a remotely sensed measurement that has some
sensitivity to the atmospheric variable we desire, we can compute the sig-
nal that we would observe with our remote sensor using a so-called for-
ward model (i.e., the forward process). In other words, if we knew the at-
mospheric state, which includes here all variables affecting the observed
signal, we could reproduce the measurement. These forward models ide-
ally are based upon first principles, so that we have a fair degree of con-
fidence in their fidelity. However, they are often nonlinear, which makes
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them difficult, if not impossible, to invert ana-
lytically. Thus, the retrieval problem is essen-
tially the development of an algorithm that is
used to invert the forward model (F) so that
we can derive the atmospheric variable that
we desire (e.g., humidity, temperature, drop
size distribution) from the observation that
we have made from our remote sensor (e.g.,
brightness temperature, radar reflectivity).

Atmospheric research scientist Graeme
Stephens provided a classic illustration for a
retrieval. Suppose that you desire a description
of a dragon, but you observe only the footprints
that the dragon makes in the sand. Now, if you
already know the dragon, you can pretty easily
describe the tracks it might make in the sand
(i.e., you can develop a forward model). But if
you observe only the tracks in the sand, it will
be much more difficult to describe the dragon
in any detail. You will likely be able to tell that
it was a dragon and not a deer, but there will
be aspects that you will be unable to charac-
terize: the dragon’s color, if it has wings, etc.
A retrieval can combine the observations
(large footprints) with prior information (most
dragons have wings and the ones making large
footprints are green) to get the most likely state
(it was a green dragon with wings).

Optimal estimation (OE) is a widely used
physical retrieval method that combines mea-
surements, prior information, and the cor-
responding uncertainties based on Bayes’s
theorem to find an optimal solution for the
atmospheric state with the help of a forward
model. In this educational study, we want to
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é Fig. 1. Optimal
estimation
principle: The
ellipses show

the (left) prior
state and (right)
measurement
uncertainty. The
iterative process
starts with applying
the forward oper-
ator F to the first
guess (here x;, =x,).
Based on the differ-
ence of F(x_) toy,,,
(which is close to
but not equal to an
ideal measurement
Yirun FEpresenting
Xyuw) X, is obtained
(which requires
inverting F). This is
repeated until the
retrieval converges
to a solution x; =
x,, that is close to
the true state x,,,.
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stress the importance of properly handling the
uncertainties associated with OE. The uncer-
tainty of the retrieval result arises mainly from
three sources: first, the prior dataset is critical
as a constraint for physical retrievals. Often,
however, the data needed to build a well-char-
acterized prior dataset are inadequate or simply
unavailable. For example, there are very few
observational datasets available that allow us
to determine the level-to-level covariance of
cloud microphysical properties, which is criti-
cal information that is needed for cloud prop-
erty retrievals, and therefore the community
is using other sources such as model simula-
tions. Second, the uncertainties in the forward
model assumptions have been neglected for
too long and need to be considered. Forward
models may be fundamentally incorrect (e.g.,
applying 1D radiative transfer approaches to
situations that are inherently 3D), or may have
uncertainties in the model parameters that af-
fect retrieval results. Lastly, perhaps the most
obvious source of uncertainty in a retrieval is
in the observations themselves. Too often our
community assumes that the corresponding
measurement covariance matrix is diagonal
and that there is no correlation between dif-
ferent measurements within the observational
vector. However, it must be stressed that such
a detailed error characterization may not lead
to a retrieval improvement if other error sources
such as measurement hiases are not correctly
identified before retrieval.

Inaddition tothese three uncertaintysources,
users should consider general limitations of OE
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such as the assumption of Gaussian uncertainty
distributions. Therefore, nonnormally distribut-
ed state variables should be normalized to avoid
negative impacts on retrieval quality and robust-
ness. Using forward operators that are grossly
nonlinear (i.e., are not moderately nonlinear)
will also lead to a decrease of accuracy.

Using a series of examples, we show how
these uncertainty sources and retrieval assump-
tions interact and impact the uncertainty of the
final retrieved atmospheric state. Readers are
strongly encouraged to analyze and modify
the examples themselves using supplemen-
tal Jupyter Notebooks' that can be run online
in a web browser. Together with our novel
pyOptimalEstimation Python library,’ this gives
the readers all the information needed to get
started with their own OE retrieval projects.
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! Jupyter Notebooks
are a web application
for creating docu-
ments that contain
live code, equations,
and figures. The sup-
plemental notebooks
are available online
(https:/fgithub
.com/maahn
/pyOptimalEstimation
_examples).

2 https:/fgithub
.com/maahn
/pyOptimalEstimation

It is important to recognize that OE is just
one tool, albeit a powerful one, that can be
used to retrieve atmospheric information from
remote sensing observations. We stress that
more work isneeded to accurately characterize
the three sources of uncertainties in the future.
If the limitations of OE make it inapplicable to
a problem, other physical retrieval approach-
es such as the computationally expensive
Markov chain Monte Carlo method are more
appropriate for highly non-Gaussian cases or
where the forward modelis highly nonlinear.

Lastly, even the best retrievals can only be
as good as the underlying observations, stress-
ing the need for enhanced instruments that
can constrain retrievals better; this could be
achieved using new instrument concepts, im-
proved designs, or smarter sensor synergies. o's
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BAMS: What would you like readers
to learn from this article?

Maximilian Maahn (University

of Colorado and NOAA/Physical
Sciences Laboratory): The goal of our
article is to lower the entry threshold
for developing inverse retrievals and
help the readers avoid typical begin-
ner‘s mistakes. By providing all the
required tools and extensive exam-
ples, users can hopefully jump-start
solving their own problems.

Dave Turner (NOAA/Global Systems
Lab): Many people in the BAMS com-
munity use remote sensing retrievals
regularly, and probably do not con-
sider that there could be very large
uncertainties in the product (e.g., rain
rate from the NWS radar network
over the CONUS). | hope that this ar-
ticle helps to illustrate how sensitive
these could be, especially those in the
prior dataset and model.

BAMS: How did you become inter-
ested in the topic of this article?

MM: During the government
shutdown of 2019-20, | was locked

out of all my data that were stored
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on NOAA computers. So | couldn’t
make any progress with my main
projects. Therefore, | thought
about what paper that | could

write in “one week” and started
working on a manuscript about the
pyOptimalEstimation library | had
developed. When | reached out to
Dave [Turner], | learned that he was
also warking on an Optimal Estima-
tion paper but with a more educa-
tional focus. We joined forces and
came up with the concept of the
current paper. When the shutdown
eventually ended, we were all busy
with our other projects again and it
took about a year finishing the man-
uscript. However, for me it is still the
“one-week paper” even though it
took a little longer to finish.

DT: | have a background in thearet-
ical mathematics, and I have always
been interested in information
content. That drew me to Bayesian
retrievals, as the framework lends
itself well to quantifying the impact
of the observations.

BAMS: What surprised you the most
about the work you document in
this article?

https://mydigitalpublication.com/publication/?m=43726&i=699633&p=64

DT: | was surprised how often the
parametric uncertainties in the
forward model dominate the error
budget of the retrieved

quantity!

BAMS: What was the biggest chal-
lenge you encountered while doing
this work?

MM: The biggest challenge was to
make the manuscript easily acces-
sible for grad students without
foregoing discussion of important
details lost to keeping the manu-
script short.

DT: It was challenging to take a
complex mathematically based
subject, which has a lot of power
and beauty, and express it in an
easy-to-understand way.

BAMS: What's next?

DT: The mathematics of retrievals
and data assimilation are very
similar. | would like to explore
employing some technigues used in
the data assimilation community to
improve retrieval

methods.
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