Maximilian Maahn


Phone: +49 341 97-32853
maximilian [dot] maahn [at] uni [dash] leipzig [dot] de
Institut für Meteorologie
Stephanstraße 3, Room 7
04103 Leipzig

ORCID Profile Google Scholar Profile Publons Profile

Maximilian Maahn joined the Leipzig Institute for Meteorology in July 2020. His main research interests include enhancing radar observations of polar clouds and precipitation and understanding how clouds are influenced by aerosols through surface- and in-situ observations. Currently, he is investigating how local emissions from industrial facilities in Alaska modify the ratio between liquid droplets and ice particles in mixed-phase clouds. Read a feature about his background and work at the website of the ARM program at

Professional career

  • since 07/2020: Leipzig University
  • 03/2016 - 05/2020: Cooperative Institute for Research in Environmental Sciences (CIRES) of the NOAA Earth System Research Laboratories and the University of Colorado Boulder
  • 05/2011 - 02/2016: University of Cologne
  • 01/2011 - 05/2011: Bonn University



  • Maahn, M., D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G. Mace, and J. M. Comstock, 2020: Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. Bull. Amer. Meteor. Soc., 101, E1512–E1523, doi:
  • Matrosov, S. Y., A. V. Ryzhkov, M. Maahn, and G. de Boer, 2020: Hydrometeor Shape Variability in Snowfall as Retrieved from Polarimetric Radar Measurements. J. Appl. Meteor. Climatol., 59, 1503–1517, doi:
  • Mech, M., M. Maahn, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geoscientific Model Development, 13, 4229–4251, doi:


  • Acquistapace, C., U. Löhnert, M. Maahn, and P. Kollias, 2019: A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing. J. Atmos. Oceanic Technol., 36, 781–801, doi:
  • Ghate, V. P., P. Kollias, S. Crewell, A. M. Fridlind, T. Heus, U. Löehnert, M. Maahn, G. M. McFarquhar, D. Moisseev, M. Oue, M. Wendisch, and C. Williams, 2019: The Second ARM Training and Science Application Event: Training the Next Generation of Atmospheric Scientists. Bull. Amer. Meteor. Soc., 100, ES5–ES9, doi:
  • Maahn, M., F. Hoffmann, M. D. Shupe, G. de Boer, S. Y. Matrosov, and E. P. Luke, 2019: Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration? Atmospheric Measurement Techniques, 12, 3151–3171, doi:
  • Matrosov, S. Y., M. Maahn, and G. de Boer, 2019: Observational and Modeling Study of Ice Hydrometeor Radar Dual-Wavelength Ratios. J. Appl. Meteor. Climatol., 58, 2005–2017, doi:


  • de Boer, G., M. Ivey, B. Schmid, D. Lawrence, D. Dexheimer, F. Mei, J. Hubbe, A. Bendure, J. Hardesty, M. D. Shupe, A. McComiskey, H. Telg, C. Schmitt, S. Y. Matrosov, I. Brooks, J. Creamean, A. Solomon, D. D. Turner, C. Williams, M. Maahn, B. Argrow, S. Palo, C. N. Long, R.-S. Gao, and J. Mather, 2018: A Bird’s-Eye View: Development of an Operational ARM Unmanned Aerial Capability for Atmospheric Research in Arctic Alaska. Bull. Amer. Meteor. Soc., 99, 1197–1212, doi:
  • Creamean, J. M., R. M. Kirpes, K. A. Pratt, N. J. Spada, M. Maahn, G. de Boer, R. C. Schnell, and S. China, 2018: Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an Arctic oilfield location. Atmos. Chem. Phys., 18, 18023–18042, doi:
  • Creamean, J. M., M. Maahn, G. de Boer, A. McComiskey, A. J. Sedlacek, and Y. Feng, 2018: The influence of local oil exploration and regional wildfires on summer 2015 aerosol over the North Slope of Alaska. Atmos. Chem. Phys., 18, 555–570, doi:
  • Solomon, A., G. de Boer, J. M. Creamean, A. McComiskey, M. D. Shupe, M. Maahn, and C. Cox, 2018: The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds. Atmos. Chem. Phys., 18, 17047–17059, doi:
  • Williams, C. R., M. Maahn, J. C. Hardin, and G. de Boer, 2018: Clutter mitigation, multiple peaks, and high-order spectral moments in 35 GHz vertically pointing radar velocity spectra. Atmos. Meas. Tech., 11, 4963–4980, doi:
  • Acquistapace, C., S. Kneifel, U. Löhnert, P. Kollias, M. Maahn, and M. Bauer-Pfundstein, 2017: Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmos. Meas. Tech., 10, 1783–1802, doi:


  • Bühl, J., S. Alexander, S. Crewell, A. Heymsfield, H. Kalesse, A. Khain, M. Maahn, K. Van Tricht, and M. Wendisch, 2017: Remote Sensing. Meteor. Mon., 58, 10.1-10.21, doi:
  • Maahn, M., and U. Löhnert, 2017: Potential of Higher-Order Moments and Slopes of the Radar Doppler Spectrum for Retrieving Microphysical and Kinematic Properties of Arctic Ice Clouds. J. Appl. Meteor. Climatol., 56, 263–282, doi:
  • Maahn, M., G. de Boer, J. M. Creamean, G. Feingold, G. M. McFarquhar, W. Wu, and F. Mei, 2017: The observed influence of local anthropogenic pollution on northern Alaskan cloud properties. Atmos. Chem. Phys., 17, 14709–14726, doi:
  • Matrosov, S. Y., C. G. Schmitt, M. Maahn, and G. de Boer, 2017: Atmospheric Ice Particle Shape Estimates from Polarimetric Radar Measurements and In Situ Observations. J. Atmos. Oceanic Technol., 34, 2569–2587, doi:
  • Souverijns, N., A. Gossart, S. Lhermitte, I. V. Gorodetskaya, S. Kneifel, M. Maahn, F. L. Bliven, and N. P. M. van Lipzig, 2017: Estimating radar reflectivity - Snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations. Atmos. Res., 196, 211–223, doi:


  • Kneifel, S., P. Kollias, A. Battaglia, J. Leinonen, M. Maahn, H. Kalesse, and F. Tridon, 2016: First observations of triple-frequency radar Doppler spectra in snowfall: Interpretation and applications. Geophys. Res. Lett., 43, 2225–2233, doi:


  • Gorodetskaya, I. V., S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig, 2015: Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica. Cryosphere, 9, 285–304, doi:
  • Löhnert, U., J. H. Schween, C. Acquistapace, K. Ebell, M. Maahn, M. Barrera-Verdejo, A. Hirsikko, B. Bohn, A. Knaps, E. O’Connor, C. Simmer, A. Wahner, and S. Crewell, 2015: JOYCE: Jülich Observatory for Cloud Evolution. Bull. Amer. Meteor. Soc., 96, 1157–1174, doi:
  • Maahn, M., U. Löhnert, P. Kollias, R. C. Jackson, and G. M. McFarquhar, 2015: Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of Radar Moments Using in situ Aircraft Observations. J. Atmos. Oceanic Technol., 32, 880–903, doi:

2012 - 2014

  • Maahn, M., C. Burgard, S. Crewell, I. V. Gorodetskaya, S. Kneifel, S. Lhermitte, K. Van Tricht, and N. P. M. van Lipzig, 2014: How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? J. Geophys. Res. Atmos., 119, 13604–13620, doi:
  • Maahn, M., and P. Kollias, 2012: Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 2661–2673, doi:
  • Kneifel, S., M. Maahn, G. Peters, and C. Simmer, 2011: Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar). Meteorol. Atmos. Phys., 113, 75–87, doi:
  • user/mmaahn.txt
  • Last modified: 2020/11/13 17:42
  • by mmaahn